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Motivation and 
Main Problem
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General robot autonomy 
has been envisioned to be 
applied to things such as 
healthcare, in-home and 
workplace assistance, 
disaster relief, etc. 

For this to be successful, 
robots must be able to 
manipulate and grasp 
objects in unstructured 
environments when 
uncertainty is present.
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One key is perceptual awareness.
An essential capability as humans is to 
understand and perceive objects around 
us in real-time, and make decisions 
quickly. We have a sense of our 
surroundings. 

Creating a perceptually aware system 
can lead to natural reactions in 
uncertain scenarios. A reaction could 
encompass split-second decisions such 
as a change of motion on a task. 

https://docs.google.com/file/d/1m7SW8JPhxcDga2NctmHM7RMTO8b61Vi8/preview
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Autonomous Driving

1. For some systems such as 
autonomous vehicles, 
integration of perception with 
motion has worked quite 
well. This is because it is a 
low-dimensional control 
problem. 

2. At the time of this paper, was 
at the brink of becoming a 
consumer end product.
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So why have we not integrated 
perceptual feedback and motion 

generation to general robotic 
systems to enable reactive behavior 

in the presence of uncertainty?

7
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With tasks that require controlling 
high degrees of freedom (DoF) + a 
physical interaction with the 
environment…. 

The question is NOT why should 
we, it is how can we effectively 
integrate perception and motion 
generation to these systems? 

The Key Problem
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Key Inspirations 
and Related Work

9
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2015 Amazon Picking  
Challenge (APC):

Autonomously picking 
12/25 objects and placing 
into storage container 
within 20 minutes. Robot 
has knowledge of which 
objects are contained in 
each of the shelves 12 
bins, but not exact 
arrangement in the bin. 
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2015 DARPA Robotics 
Challenge (DRC): 

3 stage competition to develop robots 
for assisting humans in natural and 
man-made disasters. In final stage:

1. Robot drives through an obstacle 
course to dest and exits car. 

2. Enters a building through door
3. Turns a valve
4. Cuts a hole in a wall using a power 

tool, navigates over debris or 
rubble

5. Finishes by climbing stairs
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Trade-off between 
Planning vs. Feedback

Planning: searches within a 
world model to find verifiable 
Feedback: can help reduce 
uncertainty, help find local 
solutions, and is less 
computationally expensive. 
Lesson: If the manipulation 
task does not require global 
path planning, it is 
recommended to explore 
perceptual feedback. 

Lessons Learned

Trade-off between 
Modularization vs. 
Integration

Incorrect modularization of a 
problem can lead to 
unnecessary complexity, 
therefore, until we can 
formulate clear modularity for 
unstructured environments, 
building tightly integrated 
systems is essential. 
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Relevant/Related Work
[12]: R. A. Brooks, "Elephants don’t play chess", Robot. Auton. Syst., vol. 6, no. 
1/2, pp. 3-15, 1990.

[17]: S. Levine, C. Finn, T. Darrell and P. Abbeel, "End-to-end training of deep 
visuomotor policies", J. Mach. Learn. Res., vol. 17, no. 1, pp. 1334-1373, 2016: 
learning motion policies directly from perceptual feedback in form of raw camera 
images and the system joint state, e.g.,

[5]: C. Eppner et al., "Lessons from the amazon picking challenge: Four aspects 
of robotic systems building", Proc. Robot. Sci. Syst., pp. 4831-4835, 2016: 
Amazon Picking Challenge

[7]: M. Wüthrich, P. Pastor, M. Kalakrishnan, J. Bohg and S. Schaal, "Probabilistic 
object tracking using a range camera", Proc. 2013 IEEE/RSJ Int. Conf. Intell. 
Robots Syst., pp. 3195-3202, 2013: previous work used in this work.

[8] C. Garcia Cifuentes, J. Issac, M. Wüthrich, S. Schaal and J. Bohg, 
"Probabilistic articulated real-time tracking for robot manipulation", IEEE Robot. 
Autom. Lett., vol. 2, no. 2, pp. 577-584, Apr. 2017: 

[9] N. Ratliff, M. Toussaint and S. Schaal, "Understanding the geometry of 
workspace obstacles in motion optimization", Proc. 2015 IEEE Int. Conf. Robot. 
Autom., pp. 4202-4209, 2015.

[10] J. Mainprice, N. Ratliff and S. Schaal, "Warping the workspace geometry with 
electric potentials for motion optimization of manipulation tasks", Proc. 2016 
IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 3156-3163, 2016.

[31] N. D. Ratliff, J. Issac and D. Kappler, "Riemannian motion policies", Jan. 
2018: previous work used in this work.

[28] R. B. Rusu and S. Cousins, "3d is here: Point cloud library (PCL)", Proc. 
2011 IEEE Int. Conf. Robot. Autom., pp. 1-4, 2011: used in this work

Key Ideas from this body of work:

1. Postulations since early 90’s that 
integration of real-time perception and 
reactive motion is beneficial. 

2. This paper is unique because:
a. experimental scenarios are complex 

due to environment dynamics linked 
to general robot autonomy.

b. performs quantitative evaluation on 
this level of integration.

3. They leverage a range of past work on 
visual tracking and motion planning to 
make this system work. 

4. No teleoperation (DRC winner used it).
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The Problem 
Setting

14
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Goal: This is a systems paper. The goal is to use 
empirical evidence to quantify the benefit of 
integrating real-time perceptual feedback and 
reactive motion generation in dynamic 
manipulation scenarios for high DoF systems.

Approach: Inspired by lessons from 2015 
competitions, three architectures are chosen. Their 
instantiations and feedback components are 
defined, compared with experimentation, and then 
evaluated with discussion.

Approach and Goal of Research
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Architectures

16
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The Diagram

This diagram represents 
3 time steps. Shows how 
information flows 
between the perception 
and the motion 
generation modules. 
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Visualization of Diagram 

sensor information 
is integrated into 
some world state, 
represented as s.

π (l) → locally reactive
π (g) → globally reactive
π → reactive planning

y: observed sensory 
input that helps us 
continuously infer s. 

one time step
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Sense-Plan-Act (Architecture #1)
1. Perception models the environment 

(depicted by blue arrow)
2. Motion planner finds an optimal, 

collision-free path (green arrow) that 
is tracked by a stiff/accurate 
controller. 

● Visual feedback is only is considered 
at the beginning of the task.

● This is a strongly modularized 
architecture. Has advantage of 
simple and solvable subproblems.

● Popular for high DoF systems.
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Locally Reactive Control (Architecture #2)

1. Perception models the local geometry 
around the current manipulator pose. 

2. Computes a local policy to get next 
control command (red arrow). 

● Relies on pure visual feedback. 
● Local policies enable reactive motion 

behavior and robustness to 
uncertainty. 

● Unfortunately, susceptible to getting 
stuck in a local minima. You will see 
this in the upcoming video.
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Now, envision a hybrid system, that 
combines these two to have both local 
control mixed with motion planning. 
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Reactive Planning 
(Architecture #3)

● In this architecture, the idea 
is to mix reactive motion 
planning and locally 
reactive control.

1. Motion representations of 
global (green) and local 
(red) policies are merged. 

2. Motion generation policy is 
created (yellow). 
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Let’s recap. We’ve defined the architectures. But 
to perform a fair quantitative evaluation in this 
research, each proposed architecture relies on the 
exact same feedback components for real-time 
perception and reactive motion generation. Let’s 
discuss how those components are defined, then 
watch everything in action with videos.
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Feedback 
Components

24

Important Note: We will discuss all feedback integration methods 
used in this system. But, the goal is to serve as a requirement 
outline for any alternative methods created and used in the future.



CS391R: Robot Learning (Fall 2022) 25

Preface to Visual Tracking of Target Objects (Feedback Component #1)

Manuel Wüthrich

Stefan Schaal

Big Ideas: 
1. Probabilistic approach 

(Bayesian Networks + 
Rao-Blackwellised 
particle filtering) for 
object tracking using 
range cameras

2. robust to occlusion
3. fast for real-time 

tracking on a singular 
core. [7]



CS391R: Robot Learning (Fall 2022) 26

The Algorithm (extra information)
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1. Goal: to effectively estimate pose of objects 
the robot seeks to manipulate.

2. Past Issues: some approaches are not fast 
for real-time tracking and direct contact 
occlusion. 

3. Mitigation Approach: 
a. Leverage probabilistic methodology [7]  

to visually track the target object.
b. Some Facts: Assumes knowledge of the 

3D target object, represented as triangle 
meshes, depth images are taken as input 
and compressed into 6 DoF object poses. 

Visual Tracking of Target Objects (Feedback Component #1)
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Preface to Visual Robot Tracking (Feedback Component #2)

Manuel Wüthrich

Stefan Schaal 

Big Ideas: 
1. Probabilistic filtering 

approach (recursive 
bayesian estimation) that 
fuses joint measurements 
with depth images to track 
robotic arm. [8]

2. Robust, precise and keeps 
tractability in mind.

3. Computationally efficient and 
good for real-time 
implementation due to 
Coordinate Particle Filtering 
and parallelization of depth 
image likelihoods. [16] [20].

Cristina 
Cifuentes

Jeannette 
Bohg
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Visual Robot Tracking (Feedback Component #2)
1. Goal: precise positioning of robot arm with respect 

to its sensing of environment & target object.
2. Past Issues: real robotic platforms have inaccuracy 

with kinematic modeling and joint parameters, 
leading to incorrect predictions of end-effector 
pose relative to camera. 

3. Mitigation Approach: 
a. Continuously estimate robot configuration, 

object pose and workspace geometry at 1 KHz 
relative to camera on head of robot. 

b. Estimations produced through fusion of depth 
images and joint angles using probabilistic 
methodology [8]. 
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Modeling Unstructured Workspace Obstacles (Feedback Component #3)

1. Goal: for collision free motion, robot 
needs to effectively be aware of the 
geometry of environment. 

2. Past Issues: 
a. Octomaps (open-source 

framework to generate volumetric 
3D environment models) uses 
Octotrees for mapping.

b. This is quite computationally 
expensive. Does not enable 
reactiveness [27]. 
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Transform point 
clouds into world 
coordinate points. 

Mitigation Approach: 
Modeling Unstructured Workspace Obstacles Cont. (Feedback Component #3)

Remove all points 
outside of the robots 
workspace.

1. Point clouds processed into voxels, 
representing a voxelgrid.

2. Set to empty for robot arm and 
tracked object. Empty voxels will not 
be considered in the octotree and will 
not be part of the collision mappings. 

3. Occluded regions are set occupied 
using ray casting 

Filter for statistical 
outliers using point 
cloud library [28]

Take this transformed point 
cloud and convert to binary 
occupancy grid 

Voxels [27] 
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http://www.youtube.com/watch?v=HpUUqcHzsII
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Alright, so we’ve discussed the 
architectures and how the environment 
is perceived by the robot, but how do we 
perform collision checking and generate 
motion (as seen in the previous video)?
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Signed Distance Fields (SDFs)

SDFs can be used to describe 
target object, table, obstacles, 
robot, etc. SDFs also allow to 
define proper Riemannian 
metrics for measuring path 
length in workspaces populated 
by obstacles (used by RP)

They are computed 
using analytical 
formations and distance 
propagation. Simple 
shapes enable this.

SDFs are positioned 
based on:

1. 6 DoF pose 
estimations from 
probabilistic 
methodology [7].

2. forward kinematics and 
joint angle estimations 
from probabilistic 
methodology [8].

3. SDFs are combined to 
produce collision free 
movement.
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Theory of Motion Generation
RMP Framework: New approach to representing and 
transforming motion policies that preserves their geometry, 
leading to an optimal control system. 
1. Individual controllers can be myopically designed to 

control only a small portion of the problem where the 
geometry is well understood.

RMP: Second-order dynamical system (acceleration field or 
motion policy) is coupled with a corresponding Riemannian 
metric [31]. 

Riemannian metric: defines which directions in the space 
the policy cares about most.
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Theory of Motion Generation (cont.) 
We can combine RMPs to solve the problem of motion generation. 

desired motion 
policy in our 
configuration space

Riemannian
metric

Jacobian 
matrix of 
differentiable 
mappings 

BIG IDEA: motion policy maps 
positions and velocities to 
accelerations, while the metric 
captures the directions in the 
space important to the policy [31]
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Theory of Motion Generation (cont.) 
We can combine RMPs to solve the problem of motion generation. 

desired motion 
policy in our 
configuration space

combine all our desired 
accelerations while taking 
associated metrics into 
account.

Riemannian
metric

desired acceleration 
vector fields

Jacobian 
matrix of 
differentiable 
mappings 
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Motion Generation

Locally 
Reactive 
Control

Reactive 
Planning Basis: 

1. Uses a RieMO [9] that continuously runs, tracking local minimum based 
on feedback → integrates info over 3 second time horizon.

2. Optimizer summarizes its policies as Linear Quadratic Regulators (LQRs), 
kinematically.

3. Integrated with other controllers using motion generation module.
4. Continuous optimization is slower than locally reactive control, so to 

mitigate delays, LQR is sent to an optimal region to find either global or 
local policy, whichever is good enough.

Basis: Collision and obstacle 
avoidance controllers are 
combined using RMP 
equation to create reactive 
behavior in local geometry.
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Experimental 
Setup

39
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Compare 3 architectures: 
locally reactive control and 
sense-plan-act (baselines), 
reactive planning

Hardware Setup: fixed-base, 
manipulation platform equipped with: 

1. Two 7-DoF Kuka LWR IV arms
2. Three fingered Barrett Hands 
3. RGB-D camera (Asus Xtion) on 

an active humanoid head.

executed on a PC that 
runs Xenomai, which is 
a real-time framework 
for Linux.

4 experimental 
scenarios:

(a) Static pick and place. 
(b) Dynamic pick and 
place. (c) Dynamic 
grasping. (d) Dynamic 
pointing.

Planning time: overall planning 
time of sense-plan-act is limited 
to 2 seconds for all experiments
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https://docs.google.com/file/d/1mcxqq_zeL_8zppA1Ju7Ws8DsX5uiW3Wl/preview
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https://docs.google.com/file/d/1RAK-7h0CJTNCBCGaHgXry0LVhcdjpco9/preview
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Static and Dynamic Results / Discussion
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44

Dynamic Graphs
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https://docs.google.com/file/d/1YepiSvQIqUSSq3bhVfh4OUPzNX9HH-MJ/preview
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46

Grasping With Dynamic Targets Results / Discussion
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Pointing in Dynamic Environments With Dynamic Target
Task has 4 levels of complexity:

1. Static environment, no obstacles, drill is not moving.
2. Blocking box introduced during execution.
3. Obstacle is moved into the way so that arm must take a 

huge detour. More exaggerated blocking.
4. Start with blocking obstacle. In the middle of movement, 

obstacle is removed while also changing the orientation of 
the drill by 90 degrees, for pointing approach adaption.
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Brief Overview / Discussion of Results

1. Reactive planning achieves better 
performance in complex environments, 
but is even good in static environments.

2. Locally reactive controller at a high 
perception rate does good too.

3. More beneficial to have fast feedback than 
accurate world representations. 

4. Limiting information transfer between 
components helps!

5. Data association is important. 
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Critiques, Limitations and Open Issues

1. Probabilistic Object Tracking: assumes 
knowledge of the 3-dimensional shape of the 
objects of interest for visual tracking. Is this really 
“general robot autonomy”?

2. SDFs: rely on distinct shape primitives (simple 
geometrics) to allow for analytic SDF formations. In 
a real world environment, is this really the case?

3. Experimentation: probabilistic methodology is 
robust to specific occlusion, but did not experiment 
with objects touching the end effector during 
movement of target. 
a. Not a lot of dynamic experiments.
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Critiques, Limitations and Open Issues (Cont).

1. Visuals: diagrams for three architectures 
could have been more clear, could have 
proposed a final diagram with how all the 
feedback components are integrated.

2. Planning Time: limited SPA to 2 seconds, 
and claim it was chosen empirically. I 
believe that there needs to be more 
explanation on why this was the case. 

3. Grasping: Lack of information on the 
grasping integration. They did a big 
experiment on it but did not explain it well.



CS391R: Robot Learning (Fall 2022) 51

Future Work for Paper / Reading

Since this paper, it has been cited 
71 times! Some selections from 
2021 and 2022:

1. An efficient locally reactive 
controller for safe navigation in 
visual teach and repeat missions 
(2022)

2. Leveraging Contact Forces for 
Learning to Grasp

3. RMPflow: A Computational Graph 
for Automatic Motion Policy 
Generation

Future Proposed Work: 

1. Look into direct contact interaction 
with haptics.

2. Learn representations of perceptual 
data for improved performance.

3. Use contact constraints over motion 
optimization.
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http://www.youtube.com/watch?v=G_AwNec5AwU
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Problem the reading is discussing: integrating 

perception and motion generation to general robotic 

systems for safe and efficient manipulation

Why is it important and hard: increased degrees of 

freedom paired with unstructured and dynamic 

environments can make tasks challenging and 

unsafe, but general robot autonomy is dependent on 

its success.

What is the key limitation of prior work: lessons 

learned from robotics challenges found there are 

tradeoffs between modularization, tight integration, 

feedback and planning. Did not quantitatively evaluate 

and experiment the way this paper did.

THE BIG IDEA : integrating real-time 

feedback on different time scales is essential 

to have safe and successful manipulation in 

unstructured and dynamic environments filled 

with uncertainty [ICRA, 2018].

ITS ROLE IN ROBOTICS: reactive motion 

generation and its success shows that trying 

to maximize “one-shot” system accuracy is 

not necessary, focus should shift to reactive 

systems. [ICRA, 2018]

Summary / Key Insights
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REAL TIME PERCEPTION MEETS REACTIVE (THROUGH MAXPLANK): https://am.is.mpg.de/publications/2017_rss_system

Perceptually Driven Autonomous Vehicle: http://acl.mit.edu/papers/LeonardJFR08.pdf

Riemannian Motion Policies: https://arxiv.org/pdf/1801.02854.pdf

ICRA Spotlight Video: https://www.youtube.com/watch?v=tSe7Rxlr9I8&t=7s

Alternate that have cited this one (with year filtering functionality): 

https://scholar.google.com/scholar?oi=bibs&hl=en&cites=9104856553503528663&as_sdt=5

2015 DARPA Robotics Challenge (VIDEO): https://www.youtube.com/watch?v=8P9geWwi9e0

Lessons from DARPA Challenge (PAPER): https://doi.org/10.1002/rob.21674

Lessons from Amazon Picking Challenge: https://www.ijcai.org/proceedings/2017/0676.pdf

IEEE Xplore (great interface for reading paper) : https://ieeexplore.ieee.org/Xplore/home.jsp

Learn about Kuka: http://www.diag.uniroma1.it/~deluca/rob1_en/09_Exercise_DH_KukaLWR4.pdf

Probabilistic Object Tracking (PAPER): https://arxiv.org/abs/1505.00241

Probabilistic Object Tracking (VIDEO): https://www.youtube.com/watch?v=7KNt2L5_jTU

Glossary of Robotics Terms: https://www.motoman.com/en-us/about/company/robotics-glossary

Experiment Video: https://www.youtube.com/watch?v=R9gZF6ihPSk

Object and Arm Tracking / Feedback Video: https://www.youtube.com/watch?v=HpUUqcHzsII
Additional Reference Links: https://www.youtube.com/watch?v=unWnZvXJH2o&t=149s

Extended Readings / Links / Credits:

https://am.is.mpg.de/publications/2017_rss_system
http://acl.mit.edu/papers/LeonardJFR08.pdf
https://arxiv.org/pdf/1801.02854.pdf
https://www.youtube.com/watch?v=tSe7Rxlr9I8&t=7s
https://scholar.google.com/scholar?oi=bibs&hl=en&cites=9104856553503528663&as_sdt=5
https://www.youtube.com/watch?v=8P9geWwi9e0
https://doi.org/10.1002/rob.21674
https://www.ijcai.org/proceedings/2017/0676.pdf
https://ieeexplore.ieee.org/Xplore/home.jsp
http://www.diag.uniroma1.it/~deluca/rob1_en/09_Exercise_DH_KukaLWR4.pdf
https://arxiv.org/abs/1505.00241
https://www.youtube.com/watch?v=7KNt2L5_jTU
https://www.motoman.com/en-us/about/company/robotics-glossary
https://www.youtube.com/watch?v=R9gZF6ihPSk
https://www.youtube.com/watch?v=HpUUqcHzsII
https://www.youtube.com/watch?v=unWnZvXJH2o&t=149s
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Extended Readings (from earlier slide):
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Thank you all for 
your attention today!
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“If you work with a complex robotic system, you need a large team of team 

players who are experts in the large variety of components that are needed to 

make a robot work (perception, learning, control, planning, hardware, 

infrastructure, ...). The reason for this paper to be one of my favourite papers 

is that the authors were a great team and worked really hard together to 

make this large quantitative set of experiments on the system level work. We 

had daily scrums during the time we build this and were all sitting in one big 

lab space which made communication easy. 

Sometimes I’m wondering if the reason we don’t yet have really great 

advances in (manipulation) robotics is that in order to build such a complex 

system you need a lot of people who get along well. And this is hard. 

Robotics might be a people problem in that sense.”

Insights from Jeannette Bohg (for Discussion)


